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The metathesis of acyclic olefins is catalysed
by a great variety of transition metal compounds
[1]. Recently, a few publications have also ap-
peared which report a non-transition metal com-
pound as catalyst for this reaction. Thus, silica,
photo-irradiated with a 250 W Hg lamp, cataly-
ses the metathesis of lower olefins [2,3], while
metathesis of linear alkenes also takes place
with the system Me,Sn/Al, O, (Al,O, pre-
treated at 900°C) [4]. Here, we report on the
metathesis of linear a-alkenes in the presence of
Si0,—Al,0; promoted with tetrabutyltin (Eq.
(D).

2Me(CH,),CH=CH,
—Me(CH,),CH=CH(CH,) ,Me
+CH,=CH, (1)

The metathesis reactions were carried out in
the liquid phase in a glass batch reactor at room

* Corresponding author.
! Also corresponding author.

temperature. Silica—alumina (Akzo, type HA 2)
was first calcined at 550°C in an air stream,
followed by a nitrogen purge at the same tem-
perature. The catalyst was then cooled to room
temperature. Subsequently tetrabutyltin  was
added, followed by the substrate. The reaction
was monitored by GC analysis.

1-Hexene, 1-octene and 1-decene underwent
metathesis to give the expected products, i.e.,
5-decene, 7-tetradecene and 9-octadecene, res-
pectively. Typical results are presented in Table
1

Although the selectivity to metathesis prod-
ucts was high in al cases, 1-hexene readily
underwent isomerization to 2- and 3-hexene,
followed by cross-metathesis between terminal
and internal hexene molecules leading to a low
selectivity for primary (i.e., self-) metathesis

2 Chemical composition (balance being SiO,): Al,O, 24.3
wt.%; Na,O 0.010 wt.%; SO, 0.9 wt.%; Fe 0.04 wt.%. With
SEM—-EDX no transition metals could be detected. A Rutherford
backscattering spectrometry (RBS) analysis indicated the presence
of molybdenum in an atomic ratio relative to iron of ca. 0.5.
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Table 1
Metathesis of terminal olefins over Bu,Sn/SiO,—Al ,05
1-Hexene® 1-Octene® 1-Decene®
Conversion to primary metathesis products® (%) (e 66 61
Total conversion to metathesis products (%) 75(44) 80 84

#Reaction conditions: olefin/Bu,Sn/SiO,~Al ,0, = 6.5 mmol /42-50 pmol /500 mg; heptane as the solvent; room temperature; reaction

time 3—-4 h.

PConversion based on analysis of the gas phase; between brackets data for 16 wmol Bu,Sn.

“Conversion based on analysis of the liquid phase.
9according to Eg. (1).

Table 2

Metathesis of 1-decene over Bu,Sn/SiO,—Al,O5 with different silica—aluminas®

Oxide wt.% Al,O, Surface area(m?/g) Conversion® (%) Selectivity © (%)
y-Al,05, Akzo 99.9 208 34 73

Si0,~Al ,0,-Siral 40, Condes’ 58.5 498 21 8
SiO,—Al,05-HA, Akzo 243 380 84 73
SI0,~Al,04LA, Akzo 130 464 8 9

SiO,, Akzo 0 344 0

#Reaction conditions as in Table 1.
PConversion to metathesis products in 2.5 h.
‘Selectivity to primary metathesis products.

dWith 1-hexene, 5.3% conversion to metathesis products, 19% conversion to dimers.

products. In a kinetic study, it was indeed ob-
served that the secondary (i.e., cross-) metathe-
sis products propene, 1-butene and 1-pentene
were the first formed lower alkenes. 1-Butene
and 1-pentene subsequently isomerized to their
internal analogues. The first formed higher
akenes (> C,) were dready internal. These
results suggest that cross-metathesis is favoured
over self-metathesis of the internal alkenes. For
the metathesis of 1-hexene there seems to be a
correlation between the amount of tin com-
pound and the conversion to metathesis prod-
ucts: for a lower Bu,Sn/SiO,—Al,O, rétio the
conversion was lower (see Table 1).

1-Octene and 1-decene underwent isomeriza-
tion to a far lower extent than 1-hexene. More-
over, for 1-hexene dimerization, a reaction to be
expected in the presence of carbocations (al-
though these are known to promote dimerization
of 2-methyl-1-alkenes only [5,6]), was also ob-

served. ® Thus, with Bu,Sn/SiO,—Al,O, as
the catalyst the selectivity for metathesis seems
to be a function of the chain length of the
alkene.

In order to gain some insight into the nature
of the active sites, other silica-aluminas with
different Al ,O, contents were also tested (Table
2). It seems that the presence of alumina is a
necessary condition for metathesis to take place.
Moreover, the highest catalytic activity was ob-
served for a 25 wt.% Al,O; sample, which is
known to have the highest Bronsted /Lewis acid
sites ratio [7]. Concerning the role of the tin
compound it should be noted that its presence
not only affects the catalytic activity for

% When silica—alumina was doped with CSOH (1 wt.%), iso-
merization was almost suppressed. Selectivity to metathesis, how-
ever, was not improved, since the metathesis/dimerization ratio
was not affected.
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metathesis, but also the rate of isomerization
(experiments with pure silica-alumina showed
isomerization of 1-hexene to a thermodynamic
equilibrium mixture of hexenes within 1 h, i.e.,
[1— Cql/2[C6] = 0.04; in the presence of
Bu,Sn this ratio was 0.51). The latter was
indeed expected as it has been shown that
Bu;SnH reacts with the surface of silica-alumina
through the highly acidic bridging OH groups
(Eg. (2)) [8,9]. The same kind of reaction is to
be expected for Bu,Sn [8]. **Sn NMR experi-
ments confirmed this hypothesis, although in
our case the presence of physisorbed Bu,Sn
was also observed.

a* e
O, BusSnH 0o
S'/ N Zwens o | )
ZIN -H Si_ Al
[N 71N 1IN 71N

Whether the catalytic site is located on atin
or on an auminium site remains to be deter-
mined. Although stannene (R,Sn=CR,) species
are known, it is necessary for the R groupsto be
bulky to prevent association [10]. Moreover,
they cannot be prepared via a smple a-H-ab-
straction on an akyltin compound. On the other
hand, a pure aluminium compound, EtAICI,,
has been described as being active for ring-
opening metathesis polymerization (ROMP) of
norbornene [11]. A mechanism which could ac-
count for both metathesis and oligomerization
of olefins on the same Al centre has been
proposed by Ivin [12]. We observed dimeriza-
tion of 1-hexene but not the dimerization of
higher alkenes: it is known that the activity of
cationic oligomerization catalysts decreases with
increasing chain length of the alkene [13]. How-

ever, the active site could also arise from a
reaction between an [AIPPT—[O]>~ site and
Bu,Sn [4]. Such site would be more available
after reaction between slica—alumina and
Bu,Sn (see Eq. (2)). Studies aiming to verify
these hypotheses are currently underway.
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