

Journal of Molecular Catalysis A: Chemical 133 (1998) 201-203



## Metathesis of terminal olefins over tin-modified silica–alumina: A letter

Marcelo J.D.M. Jannini <sup>a</sup>, Regina Buffon <sup>a,\*</sup>, A. Marco de Wit <sup>b</sup>, Johannes C. Mol <sup>b,1</sup>

<sup>a</sup> Instituto de Química, Universidade Estadual de Campinas, P.O. Box 6154, 13083-970 Campinas, SP, Brazil

<sup>b</sup> J.H. van't Hoff Research Institute, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, Netherlands

Received 8 October 1997; accepted 8 December 1997

Keywords: Metathesis; Olefins; Tetrabutyltin; Silica-alumina

The metathesis of acyclic olefins is catalysed by a great variety of transition metal compounds [1]. Recently, a few publications have also appeared which report a non-transition metal compound as catalyst for this reaction. Thus, silica, photo-irradiated with a 250 W Hg lamp, catalyses the metathesis of lower olefins [2,3], while metathesis of linear alkenes also takes place with the system Me<sub>4</sub>Sn/Al<sub>2</sub>O<sub>3</sub> (Al<sub>2</sub>O<sub>3</sub> pretreated at 900°C) [4]. Here, we report on the metathesis of linear  $\alpha$ -alkenes in the presence of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> promoted with tetrabutyltin (Eq. (1)).

 $2Me(CH_2)_nCH=CH_2$   $\rightarrow Me(CH_2)_nCH=CH(CH_2)_nMe$  $+CH_2=CH_2$ (1)

The metathesis reactions were carried out in the liquid phase in a glass batch reactor at room temperature. Silica–alumina (Akzo, type HA  $^2$ ) was first calcined at 550°C in an air stream, followed by a nitrogen purge at the same temperature. The catalyst was then cooled to room temperature. Subsequently tetrabutyltin was added, followed by the substrate. The reaction was monitored by GC analysis.

1-Hexene, 1-octene and 1-decene underwent metathesis to give the expected products, i.e., 5-decene, 7-tetradecene and 9-octadecene, respectively. Typical results are presented in Table 1.

Although the selectivity to metathesis products was high in all cases, 1-hexene readily underwent isomerization to 2- and 3-hexene, followed by cross-metathesis between terminal and internal hexene molecules leading to a low selectivity for primary (i.e., self-) metathesis

<sup>\*</sup> Corresponding author.

<sup>&</sup>lt;sup>1</sup> Also corresponding author.

<sup>&</sup>lt;sup>2</sup> Chemical composition (balance being SiO<sub>2</sub>): Al<sub>2</sub>O<sub>3</sub> 24.3 wt.%; Na<sub>2</sub>O 0.010 wt.%; SO<sub>4</sub> 0.9 wt.%; Fe 0.04 wt.%. With SEM–EDX no transition metals could be detected. A Rutherford backscattering spectrometry (RBS) analysis indicated the presence of molybdenum in an atomic ratio relative to iron of ca. 0.5.

<sup>1381-1169/98/\$19.00 © 1998</sup> Elsevier Science B.V. All rights reserved. *PII* S1381-1169(97)00304-X

## Table 1 Metathesis of terminal olefins over $Bu_4Sn/SiO_2-Al_2O_2^a$

| - / 2 23                                                   |                       |                       |                       |  |
|------------------------------------------------------------|-----------------------|-----------------------|-----------------------|--|
|                                                            | 1-Hexene <sup>b</sup> | 1-Octene <sup>c</sup> | 1-Decene <sup>c</sup> |  |
| Conversion to primary metathesis products <sup>d</sup> (%) | 7(4)                  | 66                    | 61                    |  |
| Total conversion to metathesis products (%)                | 75(44)                | 80                    | 84                    |  |

<sup>a</sup>Reaction conditions: olefin/Bu<sub>4</sub>Sn/SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> = 6.5 mmol/42-50  $\mu$ mol/500 mg; heptane as the solvent; room temperature; reaction time 3-4 h.

<sup>b</sup>Conversion based on analysis of the gas phase; between brackets data for 16  $\mu$ mol Bu<sub>4</sub>Sn.

<sup>c</sup>Conversion based on analysis of the liquid phase.

<sup>d</sup>According to Eq. (1).

Table 2 Metathesis of 1-decene over  $Bu_4Sn/SiO_2-Al_2O_3$  with different silica–aluminas<sup>a</sup>

| Oxide                                                                           | wt.% Al <sub>2</sub> O <sub>3</sub> | Surface area (m <sup>2</sup> /g) | Conversion <sup>b</sup> (%) | Selectivity <sup>c</sup> (%) |
|---------------------------------------------------------------------------------|-------------------------------------|----------------------------------|-----------------------------|------------------------------|
| $\gamma$ -Al <sub>2</sub> O <sub>3</sub> , Akzo                                 | 99.9                                | 208                              | 3.4                         | 73                           |
| SiO <sub>2</sub> -Al <sub>2</sub> O <sub>3</sub> -Siral 40, Condea <sup>d</sup> | 58.5                                | 498                              | 21                          | 8                            |
| SiO <sub>2</sub> -Al <sub>2</sub> O <sub>3</sub> -HA, Akzo                      | 24.3                                | 380                              | 84                          | 73                           |
| SiO <sub>2</sub> -Al <sub>2</sub> O <sub>3</sub> -LA, Akzo                      | 13.0                                | 464                              | 8                           | 9                            |
| SiO <sub>2</sub> , Akzo                                                         | 0                                   | 344                              | 0                           |                              |

<sup>a</sup>Reaction conditions as in Table 1.

<sup>b</sup>Conversion to metathesis products in 2.5 h.

<sup>c</sup>Selectivity to primary metathesis products.

<sup>d</sup>With 1-hexene, 5.3% conversion to metathesis products, 19% conversion to dimers.

products. In a kinetic study, it was indeed observed that the secondary (i.e., cross-) metathesis products propene, 1-butene and 1-pentene were the first formed lower alkenes. 1-Butene and 1-pentene subsequently isomerized to their internal analogues. The first formed higher alkenes ( $> C_6$ ) were already internal. These results suggest that cross-metathesis is favoured over self-metathesis of the internal alkenes. For the metathesis of 1-hexene there seems to be a correlation between the amount of tin compound and the conversion to metathesis products: for a lower Bu<sub>4</sub>Sn/SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> ratio the conversion was lower (see Table 1).

1-Octene and 1-decene underwent isomerization to a far lower extent than 1-hexene. Moreover, for 1-hexene dimerization, a reaction to be expected in the presence of carbocations (although these are known to promote dimerization of 2-methyl-1-alkenes only [5,6]), was also observed. <sup>3</sup> Thus, with  $Bu_4Sn/SiO_2-Al_2O_3$  as the catalyst the selectivity for metathesis seems to be a function of the chain length of the alkene.

In order to gain some insight into the nature of the active sites, other silica-aluminas with different  $Al_2O_3$  contents were also tested (Table 2). It seems that the presence of alumina is a necessary condition for metathesis to take place. Moreover, the highest catalytic activity was observed for a 25 wt.%  $Al_2O_3$  sample, which is known to have the highest Brönsted/Lewis acid sites ratio [7]. Concerning the role of the tin compound it should be noted that its presence not only affects the catalytic activity for

<sup>&</sup>lt;sup>3</sup> When silica-alumina was doped with CsOH (1 wt.%), isomerization was almost suppressed. Selectivity to metathesis, however, was not improved, since the metathesis/dimerization ratio was not affected.

metathesis, but also the rate of isomerization (experiments with pure silica-alumina showed isomerization of 1-hexene to a thermodynamic equilibrium mixture of hexenes within 1 h, i.e.,  $[1 - C_6]/\Sigma[C6] = 0.04$ ; in the presence of Bu<sub>4</sub>Sn this ratio was 0.51). The latter was indeed expected as it has been shown that Bu<sub>3</sub>SnH reacts with the surface of silica-alumina through the highly acidic bridging OH groups (Eq. (2)) [8,9]. The same kind of reaction is to be expected for Bu<sub>4</sub>Sn [8]. <sup>119</sup>Sn NMR experiments confirmed this hypothesis, although in our case the presence of physisorbed Bu<sub>4</sub>Sn was also observed.



Whether the catalytic site is located on a tin or on an aluminium site remains to be determined. Although stannene  $(R_2Sn=CR_2)$  species are known, it is necessary for the R groups to be bulky to prevent association [10]. Moreover, they cannot be prepared via a simple  $\alpha$ -H-abstraction on an alkyltin compound. On the other hand, a pure aluminium compound, EtAlCl<sub>2</sub>, has been described as being active for ringopening metathesis polymerization (ROMP) of norbornene [11]. A mechanism which could account for both metathesis and oligomerization of olefins on the same Al centre has been proposed by Ivin [12]. We observed dimerization of 1-hexene but not the dimerization of higher alkenes: it is known that the activity of cationic oligomerization catalysts decreases with increasing chain length of the alkene [13]. However, the active site could also arise from a reaction between an  $[A1]^{3+}-[O]^{2-}$  site and  $Bu_4Sn$  [4]. Such site would be more available after reaction between silica-alumina and  $Bu_4Sn$  (see Eq. (2)). Studies aiming to verify these hypotheses are currently underway.

## Acknowledgements

The authors thank Dr. F.C. Stedile for the RBS analysis. Financial support from FAPESP (Brazil) and a fellowship from CNPq (to M.J.D.M.J.) are gratefully acknowledged.

## References

- [1] K.J. Ivin, J.C. Mol, Olefin Metathesis and Metathesis Polymerization, Academic Press, London, 1997.
- [2] H. Yoshida, T. Tanaka, S. Matsuo, T. Funabiki, S. Yoshida, J. Chem. Soc., Chem. Commun. (1995) 761.
- [3] H. Yoshida, K. Kimura, Y. Inaki, T. Hattori, Chem. Commun. (1997) 129.
- [4] H.-G. Ahn, K. Yamamoto, R. Nakamura, H. Niiyama, Chem. Lett. (1992) 503.
- [5] I. Bucsi, G.A. Olah, J. Catal. 137 (1992) 12.
- [6] T. Kawai, M. Furuki, T. Ishikawa, J. Mol. Catal. 90 (1994) 1.
- [7] S. Rajagopal, J.A. Marzari, R. Miranda, J. Catal. 151 (1995) 192.
- [8] C. Nédez, A. Theolier, F. Lefebvre, A. Choplin, J.-M. Basset, J.F. Joly, J. Am. Chem. Soc. 115 (1993) 722.
- [9] C. Nédez, A. Choplin, F. Lefebvre, J.-M. Basset, Inorg. Chem. 33 (1994) 1575.
- [10] G. Anselme, H. Ranaivonjatovo, J. Escudié, C. Couret, J. Satgé, Organometallics 11 (1992) 2748.
- [11] K.J. Ivin, J.J. Rooney, C.D. Stewart, J. Chem. Soc., Chem. Commun. (1978) 603.
- [12] K.J. Ivin, J.J. Rooney, C.D. Stewart, M.L.H. Green, R. Mahtab, J. Chem. Soc., Chem. Commun. (1978) 604.
- [13] Y. Chauvin, H. Olivier, in: B. Cornils, W.A. Herrmann (Eds.), Applied Homogeneous Catalysis with Organometallic Compounds, VCH, Weinheim, 1996, p. 258.